2x2 Matrix Questions (Singular, Inverse, Operations & Word Problems)
-
Matrix Operations (Addition and Subtraction)
Given the matrices:
\( A = \begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix},\quad B = \begin{bmatrix} 5 & 0 \\ -2 & 3 \end{bmatrix} \)
Find:
a) \( A + B \)
b) \( A - B \)
-
Matrix Multiplication
Let \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix},\quad B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \).
Find the product \( AB \) and \( BA \). Are the two products equal?
-
Identity and Inverse
Let \( A = \begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix} \).
a) Show that \( A \) is non-singular.
b) Find the inverse of \( A \), denoted \( A^{-1} \).
c) Verify that \( A \cdot A^{-1} = I \), the identity matrix.
-
Singular Matrix
Let \( A = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix} \).
a) Find the determinant of \( A \).
b) Explain why \( A \) is a singular matrix.
c) What implication does this have when solving \( AX = B \)?
-
Word Problem: Book Sales
A school sold 2 science books and 3 math books for TSh 19,000. On another day, they sold 4 science books and 2 math books for TSh 24,000.
Let the price of a science book be \( x \) and a math book be \( y \).
a) Form a matrix equation of the form \( AX = B \).
b) Use the inverse matrix method to find \( x \) and \( y \).
-
Solving Simultaneous Equations using Inverse Matrix
Solve the system:
\( \begin{cases} 3x + 2y = 16 \\ 4x - y = 9 \end{cases} \)
a) Express in matrix form \( AX = B \).
b) Find \( A^{-1} \).
c) Use it to solve for \( x \) and \( y \).
-
Matrix Equation
Given:
\( A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix},\quad X = \begin{bmatrix} x \\ y \end{bmatrix},\quad B = \begin{bmatrix} 7 \\ 24 \end{bmatrix} \)
Solve for \( X \) using the inverse matrix method.
-
Word Problem: Farm Produce
A farmer sells 3 bags of maize and 2 bags of rice for TSh 55,000. On another day, he sells 5 bags of maize and 4 bags of rice for TSh 95,000.
Let the price per bag of maize be \( x \), and rice be \( y \).
a) Form the matrix equation \( AX = B \).
b) Use the inverse matrix method to find \( x \) and \( y \).
-
Determinants and Inverses
Given \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \):
a) Write the formula for \( \det(A) \).
b) State the condition under which \( A \) is singular.
c) Write the general formula for \( A^{-1} \), assuming \( A \) is non-singular.
-
Matrix Multiplication and Determinant
Let \( A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix},\quad B = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix} \).
a) Find \( AB \) and \( \det(AB) \).
b) Find \( \det(A) \) and \( \det(B) \).
c) Verify that \( \det(AB) = \det(A) \cdot \det(B) \).
-
Word Problem: Ticket Sales
At a concert, 2 adult tickets and 1 child ticket cost TSh 25,000.
3 adult tickets and 2 child tickets cost TSh 43,000.
Let the cost of an adult ticket be \( x \) and a child ticket be \( y \).
Use the inverse matrix method to find \( x \) and \( y \).
No comments:
Post a Comment