Algebra Revision Questions
Solve for \( x \): \( 3x - 7 = 11 \)
Factorize: \( x^2 - 5x + 6 \)
Simplify: \( (2x + 3)(x - 4) \)
Expand: \( (x - 2)^2 \)
Solve for \( x \): \( 2x + 3 = 3x - 4 \)
Factorize: \( x^2 - 9 \)
If \( x = 3 \), evaluate \( x^2 - 2x + 1 \)
Simplify: \( \frac{3x^2}{x} \)
Factor completely: \( x^2 + 4x + 4 \)
Find the value of \( x \) if \( x^2 = 49 \)
Expand and simplify: \( (x+5)(x-2) \)
Solve for \( x \): \( \frac{x}{3} + 1 = 4 \)
Simplify: \( x(x+2) - 3(x+2) \)
Factor: \( 2x^2 - 8x \)
Solve: \( x^2 - 4x = 0 \)
Simplify: \( \frac{4x^2 - 9}{2x + 3} \)
Find the roots of \( x^2 + 6x + 9 = 0 \)
Evaluate: \( (x+2)^2 \) when \( x = -3 \)
Factor: \( x^2 - 2x - 15 \)
Solve: \( \frac{2x - 1}{3} = 5 \)
Simplify: \( (x + 3)^2 - (x - 1)^2 \)
Factor: \( x^2 - 16 \)
Solve for \( x \): \( x^2 = 2x \)
Solve: \( 3(x - 1) = 2x + 4 \)
Factorize: \( 4x^2 - 25 \)
Simplify: \( \frac{x^2 - 4}{x - 2} \)
Solve: \( x^2 + x - 6 = 0 \)
Expand: \( (2x - 5)^2 \)
Simplify: \( (x^2 - 1)(x + 1) \)
Solve: \( \frac{2x + 1}{x} = 3 \)
Show/Hide Answers
Answers
\( x = 6 \)
\( (x - 2)(x - 3) \)
\( 2x^2 - 5x - 12 \)
\( x^2 - 4x + 4 \)
\( x = 7 \)
\( (x - 3)(x + 3) \)
\( 4 \)
\( 3x \)
\( (x + 2)^2 \)
\( x = \pm7 \)
\( x^2 + 3x - 10 \)
\( x = 9 \)
\( (x - 3)(x + 2) \)
\( 2x(x - 4) \)
\( x = 0 \) or \( x = 4 \)
\( 2x - 3 \)
\( x = -3 \)
\( 1 \)
\( (x - 5)(x + 3) \)
\( x = 8 \)
\( 8x + 16 \)
\( (x - 4)(x + 4) \)
\( x = 0 \) or \( x = 2 \)
\( x = 7 \)
\( (2x - 5)(2x + 5) \)
\( x + 2 \)
\( (x - 2)(x + 3) \), so \( x = 2 \) or \( -3 \)
\( 4x^2 - 20x + 25 \)
\( (x - 1)(x + 1)(x + 1) = (x^2 - 1)(x + 1) \)
\( x = 1 \)
No comments:
Post a Comment