1. Given \( A = \{1, 2, 3, 4\} \) and \( B = \{3, 4, 5, 6\} \), find \( A \cap B \).
2. Let \( A = \{x : x \text{ is even}, x \leq 10\} \) and \( B = \{x : x \text{ is a multiple of 3}, x \leq 10\} \). Find \( A \cup B \).
3. If \( A = \{a, b, c\} \) and \( B = \{c, d\} \), list \( A - B \).
4. Determine whether \( A \subseteq B \), where \( A = \{2, 4\} \) and \( B = \{1, 2, 3, 4, 5\} \).
5. If \( A = \{1, 2, 3, 4, 5\} \) and \( B = \{6, 7\} \), are the sets disjoint?
6. Find the number of elements in \( A \cup B \) if \( n(A) = 6 \), \( n(B) = 7 \), and \( n(A \cap B) = 3 \).
7. In a Venn diagram of two sets \( A \) and \( B \), what region represents \( A \cap B \)?
8. If \( A = \{2, 4, 6, 8\} \) and \( B = \{1, 3, 5, 7\} \), find \( A \cup B \).
9. Let \( A = \{x : x \in \mathbb{N}, x < 5\} \) and \( B = \{x : x > 2\} \), find \( A \cap B \).
10. If \( A = \{a, b\} \) and \( B = \{a, b, c\} \), is \( A \subset B \)?
11. Find the symmetric difference \( A \Delta B \) for \( A = \{1, 2\} \), \( B = \{2, 3\} \).
12. Given \( A \cup B = \{1, 2, 3, 4, 5\} \) and \( A \cap B = \{3\} \), find possible sets \( A \) and \( B \).
13. Find \( n(A \cup B) \) given \( n(A) = 10 \), \( n(B) = 15 \), and \( n(A \cap B) = 5 \).
14. Let \( U = \{1, 2, 3, 4, 5, 6\} \), \( A = \{2, 4\} \), find \( A' \).
15. If \( A = \{x : x \text{ is a prime } \leq 10\} \), and \( B = \{2, 4, 6, 8\} \), find \( A \cap B \).
16. Draw a Venn diagram showing \( A \cup B \).
17. Use a Venn diagram to show that \( A \subset B \).
18. Let \( A = \{x : x \text{ is a vowel}\} \) and \( B = \{a, e, i, o, u, y\} \). What is \( A \cap B \)?
19. Find the universal set \( U \) that contains both \( A = \{1, 2\} \) and \( B = \{2, 3, 4\} \).
20. Is \( \{0\} \subseteq \{0, 1, 2\} \)?
21. Find elements in \( B - A \), where \( A = \{2, 4\} \) and \( B = \{2, 3, 4, 5\} \).
22. What is \( (A \cup B)' \) if \( U = \{1, 2, 3, 4, 5, 6\} \), \( A = \{1, 2\} \), \( B = \{3, 4\} \)?
23. Let \( A = \{x : x \text{ divisible by 2 and } \leq 10\} \), \( B = \{x : x \text{ divisible by 3 and } \leq 10\} \). Find \( A \cap B \).
24. Use a Venn diagram to explain \( A - B \).
25. Show with a Venn diagram that \( A \cap B = B \cap A \).
26. Prove using example that \( A \cup B = B \cup A \).
27. Identify the shaded region of a Venn diagram with \( A \cup B \).
28. If \( A = \{\text{days of the week}\} \) and \( B = \{\text{weekend days}\} \), find \( A - B \).
29. Let \( A = \{\text{even numbers}\} \), \( B = \{\text{odd numbers}\} \), what is \( A \cap B \)?
30. If \( A = \{\text{Multiples of 2}\} \) and \( B = \{\text{Multiples of 4}\} \), what is \( A \cap B \)?
No comments:
Post a Comment